
Documentation for the
Investment Technologies

Mitsmini Microcontroller Board
© Dean Camera, 2004-2005

Version 1.0

 Overview:
The Mitsmini is the latest in the Investment Technologies’ line-up of microcontroller
development boards. Forgoing the Atmel chips used in the previous ABC “Hotchip”
boards in favour of a much more powerful Mitsubishi M16C core, the board gives
unprecedented power to the user.

The Mitsubishi M30624FGMFP is a 16-bit microcontroller, boasting a 16 MHz clock
(up to 16 million instructions per second), 8-channel 10-bit analogue-to-digital
converter, and 2-channel digital-to-analogue converter.

This documentation should help strengthen where the ABC boards were weak - by
providing an easy to use combination manual and reference to allow users of all
experience to get started. The documentation has been broken up into sections for
easy reference.

It should be stressed that this document is not a datasheet or technical manual;
although advanced, it explains everything in an easy to understand manner for users
of all expertise. The focus is mainly on hardware; for programming, please consult
another software-centric manual, or read your chosen/preferred programming
environment’s help files (if included).

Documentation for the Mitsmini Board (Version 1.0) Page 1

Documentation Contents:

Chapter 1: The Mitsmini Range
 Mitsmini kits available from Austrol
 Add-on Boards from Austrol

Chapter 2: The Mitsubishi Chip
 The M30624FGMFP microcontroller
 A note about pin feature doubling
 Description of pins
 The two internal memory types
 The Internal Bootloader
 The watchdog timer

Chapter 3: The Mitsmini Board
 Overview of the Mitsmini Board
 Setting up the Mitsmini’s Jumpers
 Description of Connector Pins

Chapter 4: Bits, Bytes and Communication
 Internal Registers
 The PORT, PIN and DDR registers
 Microcontroller Interrupts
 Introduction to Digital Communication
 The Mitsmini’s serial connector
 The I²C communication protocol

Chapter 5: Connecting your Mitsmini
 Sinking and Sourcing current
 Interfacing to other ICs
 Connecting to devices via the I/O Expander board
 Pull-up and Pull-down resistors
 Transistors
 Multiplexing LEDs
 Multiplexing Pushbuttons
 Pulse Width Modulation

Chapter 6: Appendix
 Glossary of Terms
 About the Author
 Disclaimer

Documentation for the Mitsmini Board (Version 1.0) Page 2

CHAPTER 1: The Mitsmini Range

 Mitsmini Kits available from Austrol:
Austrol package the Mitsmini in several kits, each containing a different set of items.
A brief description of the range is shown below.

Mitsmini Basic Starter Kit

The Starter Kit is ideal for persons familiar to
microcontrollers and/or electronics. It includes the
programming (serial) cable, the Mitsmini board, and the
software CD. The Starter Kit would be ideal for Electronics
enthusiasts with a stock of electronics parts, or for
prototyping of a commercial device.

This is the “barebones” of Mitsmini kits; all external
devices must be created and attached by the user.

Mitsmini Education Kit
The Educational Kit is perfect for persons new to
microcontrollers. It contains a Software CD, Cables, and a
wealth of add-on boards (see “Add-on Boards from
Austrol” section) including the Mitsmini board and:

 Quad Relay Board
 2-Way Bus Board
 MOSFET Transistor Board
 Opto-Isolated Board
 I/O Expander Board
 4x4 Keypad Board
 NPN Transistor Board
 Quad non-isolated Input Board

Mitsmini 2-way Bus Expansion Kit

This kit contains the Mitsmini microcontroller board, a 2-
Way Bus Board, expander cables, Software CD and a
board to make the Mitsmini outputs compatible with many
of the Add-on boards originally designed for the ABCmini
board also available from Austrol.

Documentation for the Mitsmini Board (Version 1.0) Page 3

Mitsmini 5-way Bus Expansion Kit

Similar to the 2-Way Bus Expansion Kit, save for the bus
board. This connector can accommodate up to five
Mitsmini compatible boards.

Mitsmini RF Kit

A perfect kit for wireless applications. The RF Kit contains
two Mitsmini microcontroller boards, two 5-Way bus
boards, two I/O Converter Boards, Cables, Software CD
and two RF wireless link boards.

 Add-on boards available from Austrol:
To complement its range of kits, Austrol manufacture several separate add-on boards.
You will need a bus board (5-way and 2-way boards shown below) to connect your
Mitsmini to another or other boards.

5-way Bus Connector

This bord is designed to connect the Mitsmini to other
Mitsmini add-on boards that use the 96-pin connector.

2-way Bus Connector

Similar to the 5-way bus board above, except that this will
only connect a Mitsmini board to one other board.

RF Transceiver
This board will allow you to communicate wirelessly with
other Mitsmini boards several meters away. You will need

Documentation for the Mitsmini Board (Version 1.0) Page 4

a minimum of two Mitsminis and two RF Boards to
exchange information.

I/O Expander

The I/O expander will make the Mitsmini compatible with
the older add-on boards designed for the predecessor of
the Mitsmini, the ABCmini. 14 connectors plus an
additional serial port (connected to UART 0) create a
wealth of possibilities.

Keypad Module

Requires two I/O connectors. A 4x4 matrix of pushbuttons
for user input.

(Requires the Mitsmini I/O Expander)

Quad N-Channel Logic Level MOSFET

Although its name’s a mouthful, this allows you to interface
the Mitsmini to high-voltage and high-current devices.
Driven by a standard logic I/O, this will drive up to 33V
2.5A (without additional heatsink).

(Requires the Mitsmini I/O Expander)

Quad Non-Isolated Input

Some devices use a higher logic level than 5V, or you
may wish to sense higher than logic level voltages on an
I/O. This board will allow four inputs up to 24V each act
as a digital signal.

(Requires the Mitsmini I/O Expander)

Documentation for the Mitsmini Board (Version 1.0) Page 5

NPN Open-Collector Relays

Requiring two I/O connectors (like the keypad module),
this board will switch 8 light duty (less than 100ma) loads
via 8 separate open-collector BC547 NPN transistors.

(Requires the Mitsmini I/O Expander)

Quad Relay Module

Four relays allow medium-heavy loads (max 275VAC 5A
or 35VDC 5A) to be switched via a single I/O connector.

(Requires the Mitsmini I/O Expander)

Documentation for the Mitsmini Board (Version 1.0) Page 6

CHAPTER 2: The Mitsubishi Chip

 The M30624FGMFP microcontroller:
Belonging to the Mitsubishi M16C family, the M30624FGMFP offers power and
flexibility in a tight surface-mount package.

All microcontrollers - just like a computer CPU - require a clock source. Each pulse
from the clock tells the microcontroller to execute an instruction. The most popular
clock source for Microcontrollers is the quartz crystal as they are widely available in
many frequencies and are relatively cheap. Each Microcontroller model has different
specifications and so a suitable clock frequency must be applied accordingly. The
M30624FGMFP requires a 16MHz clock frequency - which will execute 16,000,000
cycles per second - but this can be internally divided by powers of two in software to
give a custom amount of instructions executed per second. PIC micros automatically
divide by 2 or 4, so may use a 16MHz clock but only execute 8,000,000 cycles per
second.

The features of the M30624FGMFP are detailed below in point form. If you are
unsure of a term or are new to microcontrollers, do not worry; these will be explained
later in the documentation.

 CMOS (Complementary MOS) based
 16MHz Clock – Speed can be divided by software
 16-Bit Microcontroller – More powerful than the dated 8-bit Atmel Chips use

in the ABCmini and ABCmaxi boards
 10-Bit Analogue-to-Digital converter
 256 Kb of Flash Rom
 20 Kb or RAM
 Optimised for Low Power Consumption
 25 Internal and 8 External Interrupts
 5 output and 6 input 16-bit multifunction timers (for PWM, etc.)
 3 serial UARTs
 8 10-bit A/D converters
 2 8-bit D/A converters
 5ma maximum current per port pin

Interestingly, due to the 20Kb of RAM, you can run small programs straight from this
memory, as opposed to programming the chip’s ROM. As Flash ROM can only be
programmed a limited amount of times, so this is great for development as RAM can
be written to as many times as you want.

Like standard logic IC’s, the M30624FGMFP runs on 5V logic and thus can be
interfaced with other 5V logic ICs directly. Each port can act as either an input or an
output, but some alternate pin features are unidirectional (either input or output).

Due to the microscopic size of the circuitry, the outputs can only use a tiny amount
(5ma) of current each. Most applications will need a transistor (acting as a switch) to
power devices. Light duty devices will require only a tiny standard transistor (such as

Documentation for the Mitsmini Board (Version 1.0) Page 7

the BC548) but heavy-duty applications (such as high-voltage or high-current) will
need a large MOSFET transistor, or a standard transistor linked to a relay.

Most IC’s (the M30624FGMFP is no exception) are static-sensitive. Friction or
contact with statically charged materials may cause a charge to build up in the skin or
clothes, and can be discharged as a high voltage (several kilovolts) into the delicate IC
circuitry when the conductive pins or contacts are touched. Because of this, you
should always wear an antistatic wrist strap connected to an earthed material (such as
a tap) before working with the Mitsubishi IC or the Mitsmini board to dissipate these
unwanted currents. Antistatic wrist straps are available from most electronics stores
for $10-$20, or alternatively (this is not an ideal solution) you can touch an earthed
object beforehand.

In addition, ensure you are not working on a conductive surface such as a metal
workbench or table, as this will short out the board and/or power-supply and may
cause personal injury.

 A note about Pin Doubling:
To squeeze as much features into a small package, almost all of the pins on the
Mitsubishi microcontroller share their functionality with another feature. To enable
such features as the A/D converter or the UART(s), you must sacrifice one or more
digital I/O pins. If the extra feature is not enabled, the pin with default to its primary
function.

In the pin description table, the primary functions are shown in blue, with secondary
functions shown in red, green, grey and pink.

 Description of Pins:
The following table is the pin-out for the microcontroller’s direct pins; i.e. not the
Mitsmini’s large white 96-pin connector. The pins start from the bottom-left (shown
as red pin) and run around the outside in an anti-clockwise direction to pin 100
(shown as blue pin.)

Documentation for the Mitsmini Board (Version 1.0) Page 8

Micro
Pin

Description/Function(s) Micro
Pin

Description/Function(s)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Port 9.6 Serial Out #4 A/D Extended Input #1
Port 9.5 Serial Clock #4 A/D Extended Input #0
Port 9.4 D/A Converter 1 Timer B Input #4
Port 9.3 D/A Converter 0 Timer B Input #3
Port 9.2 Serial Out #3 Timer In #2
Port 9.1 Serial In #3 Timer In #1
Port 9.0 Serial Clock #3 Timer in #0
Bus Select (L=16 Bit, H=8 Bit)
CVNss (Connect to VCC)
Port 8.7 External Secondary Timer Crystal In
Port 8.6 External Secondary Timer Crystal Out
/RESET (L for 20 cycles=Reset)
Xout (Crystal or Clock Source Out)
Vss (0V)
Xin (Crystal or Clock Source In)
Vcc (5V)
Port 8.5 NMI Interrupt (L=Active, Input only*)
Port 8.4 External Interrupt #2 (L=Active)
Port 8.3 External Interrupt #1 (L=Active)
Port 8.2 External Interrupt #0 (L=Active)
Port 8.1 Timer A #4 Input
Port 8.0 Timer A #4 Output
Port 7.7 Timer A #3 Input
Port 7.6 Timer A #3 Output
Port 7.5 Timer A #2 Input
Port 7.4 Timer A #2 Output
Port 7.3 Timer A #1 Input UART #2 /CTS & /RTS
Port 7.2 Timer A #1 Output UART #2 Clock
Port 7.1 Timer A #0 Input Timer B #0 Input
 UART #2 RxD Serial Clock
Port 7.0 Timer A #0 Output UART #2 TxD
 Serial Data
Port 6.7 UART #1 TxD
Port 6.6 UART #1 RxD
Port 6.5 UART #1 Clock
Port 6.4 UART #1 /CTS & /RTS
 UART #0 /CTS & CLKS
Port 6.3 UART #0 TxD
Port 6.2 UART #1 RxD
Port 6.1 UART #1 Clock
Port 6.0 UART #1 /CTS & /RTS
Port 5.7 Serial Ready Serial Clock Out
Port 5.6 External Mem Address Latch
Port 5.5 External Mem Hold (L=Active)
Port 5.4 External Mem Hold (State=Pin 41)
Port 5.3 External Mem BCLK
Port 5.2 External Mem Read (L=Active)
Port 5.1 External Mem WRH & BHE (L=Active)
Port 5.0 External Mem WRL & WR (L=Active)
Port 4.7 Chip Select #3
Port 4.6 Chip Select #2
Port 4.5 Chip Select #1
Port 4.4 Chip Select #0

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91

92

93
94
95
96
97
98
99
100

Port 4.3 External Mem Address Bit 19
Port 4.2 External Mem Address Bit 18
Port 4.1 External Mem Address Bit 17
Port 4.0 External Mem Address Bit 16
Port 3.7 External Mem Address Bit 15
Port 3.6 External Mem Address Bit 14
Port 3.5 External Mem Address Bit 13
Port 3.4 External Mem Address Bit 12
Port 3.3 External Mem Address Bit 11
Port 3.2 External Mem Address Bit 10
Port 3.1 External Mem Address Bit 9
Vcc #2 (5V)
Port 3.0 External Mem Address Bit 8
Vss #2 (0V)
Port 2.7 External Mem Address Bit 7
Port 2.6 External Mem Address Bit 6
Port 2.5 External Mem Address Bit 5
Port 2.4 External Mem Address Bit 4
Port 2.3 External Mem Address Bit 3
Port 2.2 External Mem Address Bit 2
Port 2.1 External Mem Address Bit 1
Port 2.0 External Mem Address Bit 0
Port 1.7 External Interrupt 5 (L=Active)
Port 1.6 External Interrupt 4 (L=Active)
Port 1.5 External Interrupt 3 (L=Active)
Port 1.4
Port 1.3
Port 1.2
Port 1.1
Port 1.0
Port 0.7
Port 0.6
Port 0.5
Port 0.4
Port 0.3
Port 0.2
Port 0.1
Port 0.0
Port 10.7 A/D Input #7
 Key Interrupt #3 (L=Active)
Port 10.6 A/D Input #6
 Key Interrupt #2 (L=Active)
Port 10.5 A/D Input #5
 Key Interrupt #1 (L=Active)
Port 10.4 A/D Input #4
 Key Interrupt #0 (L=Active)
Port 10.3 A/D Input #3
Port 10.2 A/D Input #2
Port 10.1 A/D Input #1
Analogue Vss (0V)
Port 10.0 A/D Input #0
Analogue Voltage Reference
Analogue VCC (5V)
Port 9.7 A/D Trigger Serial Input #4

Table data sourced from the Mitsubishi microcomputers M16C / 62 Datasheet

* Port 8.5 is configurable as an input port only, due to the fact that it shares its second function with the /NMI interrupt.

 The two internal memory types:

Documentation for the Mitsmini Board (Version 1.0) Page 9

Inside the M30624FGMFP’s chip package, there are two different types of memory.
Flash ROM (Read-Only-Memory) is where the final program is stored; it is written by
the computer and then run by the microcontroller each time power is applied. Flash
requires no power to keep its contents, but has a limited amount of write-cycles – that
of approximately 1000. After the flash has been reprogrammed over this limit, the
memory may malfunction or become unresponsive to programming commands and
the chip will need replacing. There is 256Kb of Flash inside the M30624FGMFP and
this cannot be written to by the microcontroller’s program – hence the “Read-Only”
name.

RAM (Random-Access-Memory) is the microcontroller equivalent of short-term
memory in humans; this is cleared when the power is removed and stores current
variable values and other “on-the-fly” data. The M30624FGMFP’s Bootloader can
run programs straight out of RAM and doing so during development will ensure that
in all likelihood you will never wear out the Flash ROM.

RAM can be written to as many times as you want, as it has no (or an incredibly high)
write-cycle lifespan.

 The Internal Bootloader:
The Mitsubishi chip contains a special alternate program that can be executed instead
of the master program held in the flash memory. This program, called a Bootloader,
allows the chip to execute programs held in the internal RAM memory or external
Flash. This is a major benefit - as described above it prevents wearing of the internal
Flash. To enable the Bootloader, you must download the program into the Mitsmini in
Boot Loader Mode (see The Included Software chapter).

When a program is downloaded into the RAM, resetting will cause the Bootloader to
automatically run the new program. It should be noted that programs running in
Bootloader mode are restricted in size, as there is only 20Kb of RAM as opposed to
the 256Kb of Flash ROM.

Bootloaders also allow you to place your programs in external memory; they will read
and run the commands when set up to do so. External memory should be connected to
the proper memory address and control pins on the microcontroller.

 The Watchdog Timer:
Inside the M30624FGMFP, the oscillator circuit’s (timing interval provided by the
16MHz external quartz crystal on the Mitsmini board) output is connected to two other
circuits; the clock input of the main processing system, and the Watchdog timing
system. This Watchdog circuit is executed completely separate from the rest of the
chip, connected to the main system by only a handful of enable and settings lines.

The Watchdog behaves just like a real guard dog, resetting the microcontroller if not
reset after a set number of cycles have elapsed. The Watchdog and the reset after x
cycles parameter is configured via programming – it is not automatically turned on at
chip start-up.

Documentation for the Mitsmini Board (Version 1.0) Page 10

The Watchdog is very useful when running programs that contain loops which may
repeat infinitely or when a glitch causes the microcontroller to “hang” – pause its
program execution. It counts silently in the background, and if not reset within a
certain amount of time, it assumes that the program execution has halted and resets
the entire chip.

Documentation for the Mitsmini Board (Version 1.0) Page 11

CHAPTER 3: The Mitsmini Board

 Overview of the Mitsmini board:
The Mitsmini board is based upon the Mitsubishi M16C microcontroller, instead of
the (now) dated Atmel AT90S8535. This move has some large implications; namely
the lack of support (and development environments) for the new micro, but has
opened up a wealth of new features.

The M16C core is true 16-bit microcontroller, allowing twice the power and
efficiency (when using 16-bit numbers) of the 8-bit AT90S8535 used in the ABC
series. It has an astounding 87 I/O ports, allowing the control of up to 87 separate
components at once. The Analogue-to-Digital converter is 8-channel 10-bit, creating
very accurate measurements of analogue voltages.

Two Digital-to-Analogue converters are provided on-board, as well as 3 Serial
UARTs and PWM capability.

The main aspects of the Mitsmini board are numbered on the picture below. The
descriptions for each item are shown on the corresponding number below the picture.

 1: Mitsubishi M16C Microcontroller
 2: Onboard 5V regulator (9-32V input)
 3: 96 Pin Connector for I/O, etc.
 4: Serial Connector
 5: 16 MHz Crystal for the Mitsubishi
 Core

 6: Serial Transceiver UART IC for serial
 communications
 7: 32.768 KHz for Real Time Clock chip
 8: Lithium-Ion Battery for external Real
 Time Clock chip
 9: Power Input for the Mitsmini board (and
 on-board chips)

 Setting up the Mitsmini’s jumpers:
There are several groups of jumpers on the top of the Mitsmini board. It is important
to set up these jumpers correctly before attempting to program or use the board.

A jumper consists of a pair of bare conductive pins, with a special connector designed
to bridge them. This connector is a small piece of hollow plastic with a metal “U”.

Documentation for the Mitsmini Board (Version 1.0) Page 12

Jumpers can be quite fiddley and so it is easiest to remove or add jumpers with a pair
of blunt tweezers.

In the above diagram, the jumper is removed, and current cannot pass between points
A and B. Once the jumper is inserted (as per diagram 2) current can be exchanged,
creating an electrical pathway. Using this method, hardware “options” can be set on
the board.

First, you must connect power to the board. You will need a “wall wart” power pack
with an output voltage of 9-32V DC. Holding the Mitsmini board with the 96-pin
connector down, the white power in screw-terminal is located above the battery
(silver and yellow component). Connect your plugpack so that the positive wire is
screwed into the correct terminal – the polarity is marked on the board. A diode
protects the Mitsmini against reverse voltage, but it is best to get it right the first time
(use a multimeter if you are unsure).

Section 1: Below the regulator
The jumpers in this section should be connected in a horizontal orientation.

Required Jumpers:

 Power
This jumper, the two pins from the top right, configures the board to use power
from the on-board regulator. If this is not set, power can be applied externally via
connector pin 1C (see Description of connector pins section).

 VREF
The VREF jumper supplies the reference voltage for the A/D converter. When the
top-left two pins are jumpered, the A/D converter reference uses the 5V regulator.
If you wish to use pin 2B (see Description of connector pins section) on the
Mitsmini connector so you can apply an external reference voltage, jumper the
second and third pin on the top-left of the jumper section.

 AVCC
This jumper is identical in its configuration, except that it occupies the three
bottom-left pins of the jumper section. The AVCC pin supplies the positive
voltage for the A/D converter.

Optional Jumpers:

 Power LED
Although optional, this is a good idea for use in development. A single LED
draws only 15ma or so, and gives a visual indication on when power is applied.
These are the two bottom right pins of the jumper section.

Documentation for the Mitsmini Board (Version 1.0) Page 13

Section 2: The left side of the board

This section of jumpers is located along the far-left side of the board, below
the RTC backup battery. They have a small caption next to each jumper pair.
The jumpers should be connected vertically.

Required Jumpers:

 CNVSS
When using internal memory, this jumper must be set. If you are running your
program out of external memory, leave this jumper unconnected. This jumper
should be use in conjunction with the “External Memory Enable” jumper.

Optional Jumpers:

 LiBat
Onboard the Mitsmini, to the top-left of the main Mitsubishi microcontroller, lays
a small 8-pin IC. This IC is a Real-Time-Clock chip, connected to the
microcontroller via an I2C connection (see The I²C communication protocol). To
hold the time and date information in this chip while power is removed, this
jumper must be set – connecting the on-board Lithium Ion battery to the RTC IC.
This battery should last approximately 10 years when constantly connected.

 Byte
Since the Mitsmini’s core is a 16-bit microcontroller, it makes sense that the
external data bus(es) are also 16-bit. If you wish to interface an 8-bit device,
setting this jumper will cause the micro to use an external 8-bit bus.

 Reset
This is actually not a jumper. Bridging these two pins together momentarily will
cause the micro to reset – this can be connected to a pushbutton for an external
reset button.

 XReset
Short for “External Reset”. Connecting this jumper will cause connector pin 29C
(see Description of connector pins section) to act as an active low reset input.
Applying GND momentarily to connector pin 29C when this jumper is set will
cause the microcontroller to reset.

Section 3: To the right of the Microcontroller
Located underneath the UART chip, these jumpers control advanced UART and
external memory functions.

Required Jumpers:

 External Memory Enable
This jumper tells the microcontroller whether to boot the program from internal or
external Flash Memory (external memory must be connected to appropriate pins

Documentation for the Mitsmini Board (Version 1.0) Page 14

as shown on the table in the Description of pins section in the previous chapter).
To select internal memory, the far-left middle and bottom pins must be jumpered,
and for external memory the far-left middle and top pins must be jumpered.

Optional Jumpers:

 CTS for UART1
When designing programs that utilise the UART, you may wish to implement the
RTS (Request to Send) and CTS (Clear to Send) signals. Jumpering the middle
two pins in this section will connect the CTS signal to Port 6.0.

 RTS for UART1
As above, except the signal is RTS, and the jumper pins are the far-right top and
bottom of the jumper section.

 Description of Connector Pins:
The following table is the pin-out for the Mitsmini’s connector. Assuming you are
holding the board with the white connector downwards (with the component side up),
the pins start from the bottom-right and run from right to left in lines of 32. Each line
is given a descending letter reference, i.e. bottom row “A”, middle row “B” and top
row “C”. On the Mitsmini board (as well as add-on boards with white 96-pin
connectors), pin A1 is soldered into a square pad (hole), while the other pins are
soldered to round holes.

Blue = Primary Function, Red = Second Function, Green = Third Function,
Pink = Forth Function, Grey = Fifth Function, Orange = Information/Notes

Mitsmini
Connector

Micro
Pin

Description/Function(s)
1A
2A
3A
4A
5A
6A
7A
8A
9A
10A
11A
12A
13A
14A
15A
16A
17A
18A
19A
20A
21A
22A
23A
24A
25A
26A
27A
28A
29A

100
97
94
91
88
85
82
79
76
73
70
67
63
59
56
53
50
47
44
41
38
35
32
29
26
23
20
17
10

Port 9.7 A/D Trigger Serial Input #4
Port 10.0 A/D Input #0
Port 10.2 A/D Input #2
Port 10.5 A/D Input #5 Key Interrupt #1 (L=Active)
Port 0.0
Port 0.3
Port 0.6
Port 1.1
Port 1.4
Port 1.7 External Interrupt #5
Port 2.2 External Mem Address Bit 2
Port 2.5 External Mem Address Bit 5
Port 3.0 External Mem Address Bit 8
Port 3.3 External Mem Address Bit 11
Port 3.6 External Mem Address Bit 14
Port 4.1 External Mem Address Bit 17
Port 4.4 Chip Select #0
Port 4.7 Chip Select #3
Port 5.2 External Mem Read (L=Active)
Port 5.5 External Mem Hold (L=Active, Logic level forced via Mem Hold jumper)
Port 6.0 UART #1 /CTS & /RTS
Port 6.3 UART #0 TxD
Port 6.6 UART #1 RxD
Port 7.2 Timer A #1 Output UART #2 Clock
Port 7.4 Timer A #2 Output
Port 7.7 Timer A #3 Input
Port 8.2 External Interrupt #0 (H=Active)
Port 8.5 /NMI Interrupt (L=Active, held high via external 10k pull-up resistor)
Port 8.7 External Secondary Timer Crystal In

Documentation for the Mitsmini Board (Version 1.0) Page 15

Blue = Primary Function, Red = Second Function, Green = Third Function,
Pink = Forth Function, Grey = Fifth Function, Orange = Information/Notes

Mitsmini
Connector

Micro
Pin

Description/Function(s)
30A
31A
32A

1B
2B
3B
4B
5B
6B
7B
8B
9B
10B
11B
12B
13B
14B
15B
16B
17B
18B
19B
20B
21B
22B
23B
24B
25B
26B
27B
28B
29B
30B
31B
32B

1C
2C
3C
4C
5C
6C
7C
8C
9C
10C
11C
12C
13C
14C
15C
16C
17C
18C
19C
20C
21C
22C
23C
24C
25C
26C
27C
28C
29C
30C
31C
32C

5
2
1

N/A
98
95
92
89
86
83
80
77
74
71
68
65
60
57
54
51
48
45
42
39
36
33
30
27
24
21
18
11
6
3
N/A

N/A
N/A
96
93
90
87
84
81
78
75
72
69
66
61
58
55
52
49
46
43
40
37
34
31
28
25
22
19
12
7
4
N/A

Port 9.2 Serial Out #3 Timer In #2
Port 9.5 Serial Clock #4 A/D Extended Input #0 RTC Chip I²C Data I/O
Port 9.6 Serial Out #4 A/D Extended Input #1 RTC Chip /Reset

VCC
Analogue Voltage Reference (AREF) (See Jumper section)
Port 10.1 A/D Input #1
Port 10.4 A/D Input #4 Key Interrupt #0 (L=Active)
Port 10.7 A/D Input #7 Key Interrupt #3 (L=Active)
Port 0.2
Port 0.5
Port 1.0
Port 1.3
Port 1.6 External Interrupt 4 (L=Active)
Port 2.1 External Mem Address Bit 1
Port 2.4 External Mem Address Bit 4
Port 2.7 External Mem Address Bit 7
Port 3.2 External Mem Address Bit 10
Port 3.5 External Mem Address Bit 13
Port 4.0 External Mem Address Bit 16
Port 4.3 External Mem Address Bit 19
Port 4.6 Chip Select #2
Port 5.1 External Mem WRH & BHE (L=Active)
Port 5.4 External Mem Hold (State=Pin 41)
Port 5.7 Serial Ready Serial Clock Out
Port 6.2 UART #1 RxD
Port 6.5 UART #1 Clock RTC Chip I²C Clock
Port 7.0 Timer A #0 Output UART #2 TxD Serial Data
Port 7.3 Timer A #1 Input UART #2 /CTS & /RTS
Port 7.6 Timer A #3 Output
Port 8.1 Timer A #4 Input
Port 8.4 External Interrupt #2 (H=Active)
Port 8.6 External Secondary Timer Crystal Out
Port 9.1 Serial In #3 Timer In #1
Port 9.4 D/A Converter 1 Timer B Input #4
GND

Power (Used as power input when onboard regulator disabled – see Jumper section)
AVCC (Only active when jumper set – see Jumper section)
Analogue Vss (0V)
Port 10.3 A/D Input #3
Port 10.6 A/D Input #6 Key Interrupt #2 (L=Active)
Port 0.1
Port 0.4
Port 0.7
Port 1.2
Port 1.5 External Interrupt 3 (L=Active)
Port 2.0 External Mem Address Bit 0
Port 2.3 External Mem Address Bit 3
Port 2.6 External Mem Address Bit 6
Port 3.1 External Mem Address Bit 9
Port 3.4 External Mem Address Bit 12
Port 3.7 External Mem Address Bit 15
Port 4.2 External Mem Address Bit 18
Port 4.5 Chip Select #1
Port 5.0 External Mem WRL & WR (L=Active, held high via external 10k pull-up resistor)
Port 5.3 External Mem BCLK
Port 5.6 External Mem Address Latch
Port 6.1 UART #1 Clock
Port 6.4 UART #1 /CTS & /RTS UART #0 /CTS & CLKS
Port 6.7 UART #1 TxD
Port 7.2 Timer A #1 Output UART #2 Clock
Port 7.5 Timer A #2 Input
Port 8.0 Timer A #4 Output
Port 8.3 External Interrupt #1 (H=Active)
/RESET (L=Reset, requires XReset jumper to be connected – see Jumper section)
Port 9.0 Serial Clock #3 Timer in #0
Port 9.3 D/A Converter 0 Timer B Input #3
GND

Table data sourced from the Mitsubishi microcomputers M16C / 62 Datasheet

Documentation for the Mitsmini Board (Version 1.0) Page 16

CHAPTER 4: Bits, Bytes and Communication

 Internal Registers:

When data is being manipulated inside the microcontroller, it is placed inside a
register. A register (shorthand for “shift register”) is a special hardware circuit that
can hold a single byte of information in binary form. In an 8-bit microcontroller, a
register can hold a value between binary 00000000 (decimal 0) and binary 11111111
(decimal 255). If a larger number is being calculated/manipulated, two registers can
be placed together to hold a number between decimal 0 and 65535.

Since the M30624FGMFP is a 16-bit microcontroller, the registers can hold 16 bits
(each bit is a single digital “switch” that can hold a 0 or 1 value) by itself – giving a
range of decimal 0 to 65535 – or, like the 8-bit micro, two can be strung together to
form a 32-bit number between decimal 0 and 4294967295.

When performing an operation, the microcontroller’s processor uses registers. For
example, if the microcontroller was instructed to multiply 16 with 3, and then subtract
8, it would:

• Clear a free register
• Store the value 16 to the previously cleared register
• Clear a second free register
• Store the value 3 to the second cleared register
• Multiply the two registers – store result in the first register
• Clear the second register
• Store 8 in the second cleared register
• Subtract the second register from the first
• Store the result in the first register

Even though the task is only two simple mathematical operations, the microcontroller
requires 9 clock cycles to perform it. The Mitsubishi micro runs at 16MHz – 16
million cycles per second so each instruction would take approximately 62.5*10^ˉ9

seconds (0.0000000625 seconds per cycle) – so the 9 cycles would take
approximately 5.6 millionths of a second to complete.

There are over a hundred device registers inside the M30624FGMFP, although some
are reserved and cannot be read or written. Each function (such as the A/D) has one or
more registers – in the case of the A/D, there are several control registers to activate
the A/D channels, and several registers to read back the A/D results on each channel.

From a programming point of view, only several registers are used often. R0 to R3 are
data registers used for arithmetic (mathematical) operations, PORT0 to PORT10 and
PIN0 to PIN10 registers control the I/O pull-up resistors (see Pull-up and pull-down
resistors) and values. Other registers, such as the A/D control and value registers, are
used less often, but are equally important.

Several other registers are used “behind the scenes” by the microcontroller’s CPU.
The PC (program counter) register is 20 bits long and holds the address (memory
location) of the current program instruction, and the Flag register holds such
information as whether the previous arithmetic operation resulted in a result of 0. The

Documentation for the Mitsmini Board (Version 1.0) Page 17

address registers A0 and A1 (used for address-related commands) and the data
registers R0 to R3 (used for arithmetic calculations) come in two “banks”. While R0
may contain one value in bank 1, it may also simultaneously hold a different value in
the second bank. Bit 4 of the flag register selects between the two register banks; if
the flag is set to 0 the first bank is selected and if the flag is set to 1 the second
register bank is selected. By switching between these banks, you can have the
equivalent of six data registers and four address registers, although all the registers
switch banks at the same time; you can’t switch the bank of a single register.

The mathematic registers R0 to R3 are all 16-bit, but R0 and R1 can be broken into
two 8-bit sections, labelled R0H or R1H (for high, bits 8-16 of the register) and R0L
or R1L (for low, bits 0-7 of the register).

 The PORT, PIN and DDR registers:

The DDR register controls the function of the port. Setting a DDR bit high will set the
corresponding port bit as an output, while a low value will configure the pin as an
input. Each port has its own DDR register, named DDR0 for port 0, DDR1 for port 1,
and so on.

To read the value of an input pin, you must use the PIN register. For example, if
Port 0.3 was an input; you would read its value from third bit of the PIN0 register.
When the pin is configured as an input, the PORT register controls the pull-up on that
port pin. As with the DDR register, there is a separate PIN register for each port.

Outputs use only the PORT and DDR registers (the PIN register does not affect the
port’s function). Setting a bit high on a PORT register will set the corresponding port
pin high.

Mode PORT PIN DDR
Output (High) 1 N/A 1
Output (Low) 0 N/A 1
Input (No Pull-up) 0 (Pin Value) 0
Input (Pull-up Enabled) 1 (Pin Value) 0

You should be very careful when switching an output pin to an input pin, as the
PORT register may be set to an unexpected state, causing problems in the program’s
execution.

Port 8.5 does not have a bit in the DDR8 register; this pin shares its second function
with the /NMI interrupt and has no internal output circuitry.

 Microcontroller Interrupts:

When programming, there will be times when you wish you could execute
calculations, and then automatically branch off into a subroutine when a condition is
met, without having to waste extra MCU clock cycles checking the status of a pin or
variable. Interrupts were created to solve this; an interrupt will pause the program
when its condition is met (running a pre-defined subroutine) before returning to its
place inside the original program.

Documentation for the Mitsmini Board (Version 1.0) Page 18

There are two types of interrupt, Software and Hardware. Hardware interrupts are
“fired” when an interrupt pin on the microcontroller changes from high to low, or a
peripheral’s (such as the A/D converter) status changes. Software interrupts include
timer overflows, etc.

You will need to enable interrupts in your program, and then enable each individual
interrupt you intend to use (to prevent other unused interrupts from firing and creating
errors).

The following is a table showing the main interrupts supported by the Mitsubishi
micro. “L” is an abbreviation of Low Logic Value (digital 0), and “H” is an
abbreviation of High Logic Value (digital 1). Some of the interrupts are assigned to a
software interrupt number, listed in the INT # column. You can fire these interrupts
via your program, allowing you to manually run the same subroutines that the
corresponding hardware interrupt executes.

Type INT # Abbreviation Name Condition
Software
Software

Software
Software

Hardware
Hardware
Hardware

Hardware

Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

0
N/A

14
17
18
19
20
15
16
21
22
23
24
25
26
27
28
5
6
7
29
30
31
4
9
8

UND
OFL

BRK
INT (0 to 63)

/RESET
/NMI
WDT

/KI (0 to 3)

ADC
UART 0 Trans
UART 0 Rec
UART 1 Trans
UART 1 Rec
UART 2 Trans
UART 2 Rec
TA 0
TA 1
TA 2
TA 3
TA 4
TB 0
TB 1
TB 2
TB 3
TB 4
TB 5
/INT 0
/INT 1
/INT 2
/INT 3
/INT 4
/INT 5

Undefined Instruction
Arithmetic Overflow

BRK Execution
Software Interrupt

Reset Command
NMI Interrupt
Watchdog Timer

Key Interrupts

A/D Conversion
Serial Transmission
Serial Reception
Serial Transmission
Serial Reception
Serial Transmission
Serial Reception
Timer A

Timer B

External Interrupt Pins

UND Instruction is executed.
INT0 command is executed after an arithmetic operation
causes an overflow.
BRK Instruction is executed.
INT command is executed. Software interrupts 0-31 are
shared with some peripheral interrupts.
Occurs when L is placed on the /RESET pin.
Occurs when L is applied to the /NMI pin.
Fired when the Watchdog timer exceeds its limit (see
Watchdog section).
Fired when one of the 4 external Key Interrupt pins’ logic
changes from H to L.
Fired when the A/D performs a conversion.
Occurs when UART0 transmits data.
Occurs when UART0 receives data.
Occurs when UART1 transmits data.
Occurs when UART1 receives data.
Occurs when UART2 transmits data.
Occurs when UART2 receives data.
Fires when one of the various Timer A events occur.

Fires when one of the various Timer B events occurs.

Occurs when one of the 6 external interrupt pins changes
from H to L.

Table data sourced from the Mitsubishi microcomputers M16C / 62 Datasheet

 Introduction to Digital Communication:

The RS-232 serial communication protocol is a standard for device-to-device
communications. Most computers have a RS-232 communication port - also known as
a COM or Serial port - although some modern computers are forgoing such “legacy”
connections as the parallel (Printer) and serial ports in favour of USB.

Documentation for the Mitsmini Board (Version 1.0) Page 19

Digital communication takes the form of a series of 1’s and 0’s. A digital “1” is the
logic voltage (in the case of the Mitsubishi M30624FGMFP chip, it’s 5V, or 12V for
RS-232 serial) and a “0” is ground (negative power terminal) on the Mitsmini, or
ˉ12V for RS-232 serial. To translate signals from a series of 1’s and 0’s, a language
called binary is used.

Binary groups data into a byte consisting of several bits, where a bit is a single piece
of digital data – either 1 or 0. These bits – similar to miniature light switches - are
then translated into a decimal number between 0 and 255. This number is converted to
one of the 255 different standard characters from the ASCII table. When several bytes
are converted into ASCII and grouped, they form numbers, words and symbols.

To transmit data between devices, the characters are first translated into binary, and
sent along a wire to the receiving device, which then converts them back into ASCII.
In some cases (such as the microcontrollers) the binary will form a lot of nonsense
words and strange characters because it is not text communication, but machine code.
Machines do not use ASCII characters for programs and instructions, rather the raw
binary.

To ensure that both devices are in sync when receiving data, a clock signal is used.
The clock line is a second wire that transmits pulses at a regular interval. When a
clock pulse is received, the receiving device checks to see if the data line is high
(logic 1) or low (logic 0).

Below is an example of a piece of digital communication (8 bits). The clock line is
shown in red, while the data is shown in blue.

1 0 1 1 0 1 1 1
12^7 02^6 12^5 12^4 02^3 12^2 12^1 12^0

The above data line has transmitted the binary information “10110111” to the
receiving device. This is enough data to form a byte of 8 bits, making the decimal
equivalent of 183 - ASCII character full stop (period). Communication with a clock
signal is useful when the communication speed varies, but if the speed is known, a
clock signal is unnecessary. Devices communicating with a computer (via serial link)
are configured to run at a preset transmission speed; data is sent in bytes, with a “start
bit” (high bit) signalling the start of a byte transfer, and a “stop bit” ending it. The
amount of start bits and stop-bits are customized by the device’s software.

To prevent incorrect information (corrupt data) from being used by the receiving
device, a checksum is added to the end of each block of data. A checksum is a single
byte, the value of which is the sum of all the bytes sent in the previous block. Once
the checksum has been transferred, the receiver can check to ensure the data it has
received is valid – if not, it requests the data again.

Documentation for the Mitsmini Board (Version 1.0) Page 20

 The I²C Communication Protocol:
The Inter-Integrated Circuit Bus is a popular method of data transmission to and from
IC’s in a circuit. Designed by Phillips, its original purpose was to create a simple
interface between IC’s in their TV circuits to reduce PCB complexity; many
manufacturers have since implemented the technology into everyday chips. The I²C
bus utilizes two wires that connect the serial clock (SCK) and serial data (SDA) pins
on each I²C enabled chip to each other. Each I²C chip can be in either master or slave
mode, although it is most common to have a single master device controlling one or
more slaves. There can be a maximum total of 112 devices on each bus, each with a
unique address.

A master device (such as a microcontroller) would send data down an I²C bus to a
slave device (such as a port extender chip), which would then react to the sent data.
The I²C bus has the advantage of being simple to implement (only two wires between
components) and manufacturers produce many different types of low-cost I²C enabled
chips. I²C chips will not work with the RS-232 (standard serial) communication
protocol and vice-versa. Both lines (SCK and SDA) must be pulled high by two 4.7k
resistors to the 5V rail.

Because there are several devices connected to a single bus, you must address the
device that you wish to communicate with. Datasheets that come with the I²C-enabled
chip will state the address as a 7-byte binary number (for example “1011011”).
Devices such as I²C EEPROMS made by a single manufacturer will all have the same
address, leading to problems when several of the same chips are placed on the one
single bus. To overcome this, there may be several address bits that are user
selectable, indicated by a letter instead of a digit in the address (e.g. “1101xx1”).
These chips will come with pins labelled “A” followed by a number (such as “A0” or
“A3”). Connecting the external “A” pins to GND or VCC will cause the address bits
to become 0 or 1’s, preventing conflicts.

The real-time-clock chip on the Mitsmini board is connected to the Mitsubishi
microcontroller via an I²C bus – see Description of connector pins.

If your I²C bus is very long, an I²C terminator is required to extend the maximum
length (from master device to last slave device) to ~80cm. The original schematic was
designed by Detlef Queck, and recreated by myself in the Eagle schematic editor.

Documentation for the Mitsmini Board (Version 1.0) Page 21

The January 2004 edition of Silicon Chip has a “Picaxe-18X 4-Channel Datalogger”
project, which has a more detailed explanation of the I²C bus (that cannot be added
here due to copyright reasons).

Documentation for the Mitsmini Board (Version 1.0) Page 22

CHAPTER 5: Connecting your Mitsmini

 Sinking and Sourcing current:

A device is said to be sinking current when the current flows from the positive (5V)
line, through the device to ground, while sourcing current is the opposite (current goes
from the positive line, through the device and down to ground). When devices are
driven by current sinking, they are activated by “reverse-logic”, where a low (logic 0)
signal will switch on the device, and a high will deactivate it.

 Interfacing to other ICs:
It is possible to directly interface your Mitsmini’s output to other ICs, without any
other hardware. The Mitsmini uses a 5V logic interface that is compatible with almost
every IC on the market. There are two main types of IC's; CMOS (Complementary
MOS) chips, upon which the M30624FGMFP microcontroller is based, and the older
TTL (Transistor-Transistor Logic) IC technology.

TTL IC’s run on 5V power supplies, while most (NOT the M30624FGMFP
microcontroller) CMOS IC’s will run on a supply ranging between 3 and 15V. The
Mitsubishi micro will directly connect to both types, provided that both chips share
the same ground and voltage as each other. A chip-to-chip interfacing example is
shown below.

If you are trying to interface a TTL IC which runs on a lower voltage than the CMOS
IC it connects to, a simple interface circuit may be required (shown below).

Similarly, if you want to connect the M30624FGMFP to a CMOS chip with a higher
supply voltage, you will need to use a modified version of the above example (using
the M30624FGMFP instead of a TTL IC and a pull-down resistor appropriate for the
second IC’s supply voltage), or using a 4050 buffer IC as shown below.

Documentation for the Mitsmini Board (Version 1.0) Page 23

 Connecting to devices via the I/O Expander board:
Austrol’s I/O expander board connects to your Mitsmini via a 2-way or 5-way bus
board and its 96-pin connector. It contains eight 4-bit and six 8-bit connectors
onboard, plus a second RS-232 serial UART (see Introduction to Digital
Communication section). Assuming you are holding the board with the 96-pin
connector upwards, the 4-bit ports are located to the left, the 8-bit ports to the right,
and the serial port in the bottom-centre. Each of the 4-bit and 8-bit ports are marked
as “H1”, “H2”, etc. on the I/O expander’s board.

The serial port (microcontroller UART1)
The pins on the serial connector run from right-to-left, with pin 1 at the top-right
(square pad). The pin-out for the I/O serial connector is as follows.

Connector
Pin

Micro
Pin

Function

1
2
3
4
5
6
7
8
9
10

32
31

N/A

See Text
See Text

Serial Receive (From Computer)
Serial Transmit (From Microcontroller)

Ground

RTS (Request to Send) signal
CTS (Clear to Send) signal

Documentation for the Mitsmini Board (Version 1.0) Page 24

Unlike the serial connector on the Mitsmini board, the RTS and CTS signals are
connected together via the jumper (if fitted) on the I/O expander board. Some
computer programs may require these signals but the jumper may be omitted if
desired.

The 4-bit connectors
If you have purchased add-on boards from Austrol that were originally designed for
the ABCmini board (and have small black connectors instead of the 96-pin white one
found on the Mitsmini), you should plug these boards into the eight 4-bit connectors.
If you have not purchased the add-on board connector cables from Austrol, you can
make your own by connecting two female 10-pin IDC connectors “straight through”
with ribbon cable. The four-bit connectors each have 5 pins connected to GND, one
pin connected to VCC, and four pins connected to ports on the M30624FGMFP
microcontroller. The pin-outs for each of the connectors are shown below. In each
case, the connector pins start from the top-left of each connector, running from left-to-
right.

An exception is the LED output board. Due to the limited current that can be supplied
by the Mitsubishi chip’s pins, the 3ma will not have sufficient power to drive the
LEDs directly, which use about 15-20ma each. Attempting to interface the LED board
with the Mitsmini may cause permanent damage to the M30624FGMFP.

Connector 1
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
88
N/A
87
N/A
86
N/A
85
N/A

VCC (5V)
Ground (0V)
Port 0.0
Ground (0V)
Port 0.1
Ground (0V)
Port 0.2
Ground (0V)
Port 0.3
Ground (0V)

Connector 2
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
84
N/A
83
N/A
82
N/A
81
N/A

VCC (5V)
Ground (0V)
Port 0.4
Ground (0V)
Port 0.5
Ground (0V)
Port 0.6
Ground (0V)
Port 0.7
Ground (0V)

Connector 3
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
80
N/A
79
N/A
78
N/A
77
N/A

VCC (5V)
Ground (0V)
Port 1.0
Ground (0V)
Port 1.1
Ground (0V)
Port 1.2
Ground (0V)
Port 1.3
Ground (0V)

Connector 4
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
76
N/A
75
N/A
74
N/A
73
N/A

VCC (5V)
Ground (0V)
Port 1.4
Ground (0V)
Port 1.5
Ground (0V)
Port 1.6
Ground (0V)
Port 1.7
Ground (0V)

Documentation for the Mitsmini Board (Version 1.0) Page 25

Connector 5
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
72
N/A
71
N/A
70
N/A
69
N/A

VCC (5V)
Ground (0V)
Port 2.0
Ground (0V)
Port 2.1
Ground (0V)
Port 2.2
Ground (0V)
Port 2.3
Ground (0V)

Connector 6
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
68
N/A
67
N/A
66
N/A
65
N/A

VCC (5V)
Ground (0V)
Port 2.4
Ground (0V)
Port 2.5
Ground (0V)
Port 2.6
Ground (0V)
Port 2.7
Ground (0V)

Connector 7
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
63
N/A
61
N/A
60
N/A
59
N/A

VCC (5V)
Ground (0V)
Port 3.0
Ground (0V)
Port 3.1
Ground (0V)
Port 3.2
Ground (0V)
Port 3.3
Ground (0V)

Connector 8
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
N/A
58
N/A
57
N/A
56
N/A
55
N/A

VCC (5V)
Ground (0V)
Port 3.4
Ground (0V)
Port 3.5
Ground (0V)
Port 3.6
Ground (0V)
Port 3.7
Ground (0V)

The 8-bit connectors
Six 8-bit connectors are located on the I/O board, each connected to a full 8-bit port
on the M30624FGMFP microcontroller. Each of these connectors allow for more
complex or larger devices to be connected to the Mitsmini. As with the 4-bit
connectors, the pins start from the top-left and run from left-to-right.

Connector 9
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
54
53
52
51
50
49
48
47
N/A

VCC (5V)
Port 4.0
Port 4.1
Port 4.2
Port 4.3
Port 4.4
Port 4.5
Port 4.6
Port 4.7
Ground (0V)

Connector 10
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
46
45
44
43
42
41
40
39
N/A

VCC (5V)
Port 5.0
Port 5.1
Port 5.2
Port 5.3
Port 5.4
Port 5.5
Port 5.6
Port 5.7
Ground (0V)

Connector 11
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
30
29
28
27
26
25
24
23
N/A

VCC (5V)
Port 7.0
Port 7.1
Port 7.2
Port 7.3
Port 7.4
Port 7.5
Port 7.6
Port 7.7
Ground (0V)

Connector 12
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
22
21
20
19
18
17
33
12
N/A

VCC (5V)
Port 8.0
Port 8.1
Port 8.2
Port 8.3
Port 8.4
Port 8.5
Port 6.5
/RESET
Ground (0V)

Documentation for the Mitsmini Board (Version 1.0) Page 26

Connector 13
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
7
6
5
4
3
2
1
100
N/A

VCC (5V)
Port 9.0
Port 9.1
Port 9.2
Port 9.3
Port 9.4
Port 9.5
Port 9.6
Port 9.7
Ground (0V)

Connector 14
Connector

Pin
Micro

Pin
Function

1
2
3
4
5
6
7
8
9
10

N/A
97
95
94
93
92
91
90
89
N/A

VCC (5V)
Port 10.0
Port 10.1
Port 10.2
Port 10.3
Port 10.4
Port 10.5
Port 10.6
Port 10.7
Ground (0V)

 Pull-up and Pull-down resistors:
For the Mitsubishi M16C chip to register digital inputs correctly (this does not apply
when reading from the A/D inputs), either an external or internal pull-up resistor must
be used. A pull-up resistor maintains a positive voltage at the port input (logic 1) until
dissipated by a short to ground (Logic 0). The standard value for a M30624FGMFP
pull-up resistor is 10K ohms. A typical pull-up resistor connected with a pushbutton
looks like this:

When the pushbutton in the circuit is not closed, the port will read logic 1 due to the
trickle of voltage produced via the resistor. Pushing the button will make the port read
logic 0, as the voltage at the resistor is dissipated to ground. The logic can be reversed
by swapping the position of the pushbutton and resistors, as shown in the next picture:

Documentation for the Mitsmini Board (Version 1.0) Page 27

This example will read logic 0 when not pushed, or logic 1 when pushed. The
M30624FGMFP chip also includes internal 10K pull-up resistors on all ports (except
port 8.5, see The PORT, PIN and DDR registers), which can be enabled via software.
You will need to consult your programming environment’s manual for the commands
to do this. If you are using a sensor that changes resistance after a stimulus, such as a
CDS cell light-sensor, you can place this in the position of the pushbutton and connect
it to an A/D port for an exact reading or a standard logic port to give a high or low
value after the sensors value exceeds a value.

Above is a rather simplistic view of the internal pull-up resistors. In practice, the port
schematics are quite a bit more complex, as the transistors that turn on and off the
pull-ups, logic circuits and data registers are not shown. When connecting sensors that
use the Mitsubishi chip’s internal pull-up resistors, you must connect the sensor to
GND, not VCC. For example, a switch connected to the port must be connected
directly to GND for the pull-ups to work. Below is the full internal circuit diagram of
a standard I/O port, courtesy of the Mitsubishi M16C datasheet.

Image Source: Mitsubishi microcomputers M16C / 62 Datasheet

Microcontrollers use a “balance” system to determine whether a port is logic 0 or 1. A
good analogy of this is a set of old-fashioned scales with positive at one end and
negative at the other. The port is read as logic 1 if there is more current entering the
microcontroller (from VCC) than leaving it (via GND). Even if the current is tiny
(like the milliamps supplied via the pull-up resistors) the port will still read logic 1 so
long as current exceeds the amount of current flowing to ground. Pressing the
pushbutton on the pull-up example above forces all current to ground, outweighing
the pull-up’s milliamps of current and thus sending the port low.

Documentation for the Mitsmini Board (Version 1.0) Page 28

Condition Graphical Representation Pin Logic
High Impedance (no input) Fluctuating between

High and Low

Pull-up, no input High

Pull-up, low logic input Low

Pull-up, high logic input High

Pull-down, no logic input Low

Pull-down, low logic input Low

Pull-down, high logic input High

 Transistors:
As previously mentioned, the ports on the Mitsmini can only drive devices at 5ma per
port pin. While this is fine for direct IC-to-IC communications, a small hobby motor
may take half an amp or more, and large devices may require several amps.
Attempting to power such devices – even a standard LED requires at least 25ma –
would result in the immediate destruction of your microcontroller and possibly the
surrounding components.

The easiest way to interface the ports with external devices is to use standard or
MOSFET transistors. Transistors can serve two main purposes, as a switch or as an
amplifier. When used in conjunction with the Mitsubishi microcontroller the
transistors act as switches to turn on or off external devices.

Standard Transistors

Documentation for the Mitsmini Board (Version 1.0) Page 29

Standard transistors come in thousands of models, each with different specifications
but they can be grouped into two types, PNP and NPN. In the examples below, the
BC547 NPN signal transistor is used. The BC547 has a maximum current load of
100ma, enough to drive approximately 4 normal LEDs with a current limiting resistor.
Below is an example of two LEDs being driven from a BC547.

You will need to calculate the required transistor turn-on resistor value (1k in the
above example) yourself as each transistor has its own specifications. This
information can be found on the transistor’s datasheet, which is either supplied with
the transistor or it (usually) can be downloaded off the Internet.

To calculate the required resistance for the LEDs, Ohms law must be used. For those
not familiar with ohms law, it states that V=IR, I=V/R and R=V/I (where V is volts, I
is Amps and R is Ohms). In practical terms, this means that the missing value (V, I, or
R) can be calculated via the formulas and the two other values.

A standard LED's current is typically around 25ma at about 1.5V for normal
brightness. You should check your chosen LED's datasheet to obtain the specific
values required.

The transistor's output in the above schematic is 5V. With two LEDs in series each
consuming 1.5V each, this results in a 3V total voltage drop across the two LEDs. In
practise this will differ slightly due to losses in the transistor, which is typically
around 200mV or so.

With a 3Vdrop, that leaves 2V across the resistor. Due to all the parts being in series,
the current flowing through each component is identical – 25mA. Since we now know
two parts of the equation – the voltage across the resistor as well as the current
flowing through the resistor – we can use Ohm's law to calculate the resistor's value:

V= I x R
R= V / I
 = 2V / .025A
 = 80 ohms

Since 100 ohms is a standard resistor value, it can be bought and used in the circuit. If
you need a non-standard resistor value, you could add two resistors together in series
(add the values), or just use the next standard value up or down, so long as the current
stays within the acceptable range printed on your LED's datasheet.

Documentation for the Mitsmini Board (Version 1.0) Page 30

An other thing you must be careful about when using resistors is the maximum power
that can be dissapated through the resistor (measured in Watts). To find the power
being dissapated in our above example, we must use the P=VI formula:

P = V x I
 = 2 x .025
 = .05 Watts

This is a very small amount of power, and can easily be dissapated by a standard ¼
watt (maximum) resistor.

MOSFET Transistors

While standard transistors will drive several LEDs or other small devices, the 100ma
or so supplied by them is insufficient to drive large devices, such as large DC motors
whose current requirements are usually several Amps. MOSFET transistors are real
workhorses, some providing up to 60 Amps, depending on the specifications. Like
normal transistors, MOSFETs come in two different types, P-channel and N-channel.
In this segment, N-channel MOSFETs are used.

While most standard NPN and PNP transistors come in the TO-92 “half-moon”
package, MOSFETs are typically contained in the TO-220 package as used for the
Mitsmini’s 5V power regulator.

TO-220 Package
Although your MOSFET may have specifications that allow a large amount of voltage
and current to flow through it, each MOSFET is only able to dissipate a certain
amount of heat before malfunctioning and burning out. To prevent this, you should
use adequate heat-sinking to remove the excess heat. Your MOSFET specifications
will have a Diss or Ptot measurement showing the maximum wattage of power that the
transistor can handle.

 Multiplexing LEDs:
In many applications, you will need a circuit that can drive many LEDs at once.
Regardless of the amount of I/O’s a microcontroller has, you will inevitably run out –
or it will become impractical to program so many ports. Consider the following
display:

Documentation for the Mitsmini Board (Version 1.0) Page 31

This has four LED digits, with the active digit selected by a negative voltage to the
digit pins at the top (assuming it’s a common cathode display), and a positive voltage
on the segments at the bottom. You should use a transistor (not a buffer chip – see
above section for standard transistor use) for the digit pins, as each digit will require
a maximum of 140ma if all seven segments on at the same time – more than a TTL or
CMOS buffer chip can supply.

Because of current limitations, each segment should be attached to a port either by
another transistor or a logic buffer chip. This is compact and easy to use, but has the
disadvantage of only being able to light one digit at a time. Fast microcontrollers
(such as the Mitsubishi chip used in the Mitsmini) can overcome this problem using a
method called multiplexing. When a device is multiplexed, it uses limited pins to
control multiple devices by scanning the devices many times per second.

Each segment’s transistor or logic buffer is connected to a separate I/O pin, as is each
digit pin’s transistor. When programming, you should make the Mitsmini send Digit
1’s transistor high and light the segments you want Digit 1 to have, then switch off
Digit 1 and select Digit 2 and light it’s segments. Continue this all the way through
the number of digits in the group, lighting each digit for only a fraction of a second.
When each digit it shown (or “refreshed”) many times a second (15-30 refreshes per
second) a phenomenon called “Persistence Of Vision” causes the display to appear as
if all of the digits are on with the correct numbers, without any flickering – the same
system employed on TV and monitor screens. If the refresh rate is too slow, the
display will flicker. This method, when used with 7-segment displays, uses 8 I/O pins
for one digit (one full port) plus one I/O pin for each additional digit.

The multiplexing method can be applied to dot-matrix displays as well (above). With
this method, LED’s are “addressed” individually. Writing the letter A on this 4x4 dot-
matrix display would light the following LEDs:

Documentation for the Mitsmini Board (Version 1.0) Page 32

Column 1 Column 2 Column 3 Column 4
Row 1 Row 1 Row 1 Row 1
Row 2 Row 3 Row 3 Row 2
Row 3 Row 3
Row 4 Row 4

In this method, the columns take on the same role as the Digit Pins in the 7-Segment
Display. A Column is held high, while the rows to be lit are held low (non-lit rows are
neutral). Each column is turned on, and its LEDs lit until all rows have been show, in
which case the cycle repeats for another “refresh” cycle.

LED’s can be purchased packaged in a “matrix” connection like this TC07-11HWA.
This has internal connections like the LED matrix shown above. You can add several
together to create a moving or static display.

When using the LEDs in this manner, remember that transistors and appropriate
current limiting resistors are required on both the rows and columns.

 Multiplexing Pushbuttons:

Another form of multiplexing is used with pushbutton keypads. These have a number
of buttons joined into a matrix, so that many buttons can be scanned using only a few
ports. The M30624FGMFP is instructed to put a voltage on each of the rows, while
another pin reads the column. A voltage of 5 volts (logic 1) indicates a pushed button,
while no voltage (logic 0) indicates an un-pushed button. A typical push-button
matrix looks like this:

There are two methods of scanning for pushed keys. One way is to send all of the row
ports low and read the column ports (with pull-ups enabled), and then send all of the
column ports high and read the row ports (with pull-ups enabled). After both scans,
you can use code to determine the pressed key(s). This is fast, but can lead to “ghost”
keys, when several keys are pressed:

Sourced from Atmel application notes (www.atmel.com)

Documentation for the Mitsmini Board (Version 1.0) Page 33

Here the key marked with an “X” is determined as “pressed” by the microcontroller
when using the first method, due to connections made while the other shaded keys are
pushed. The second method is slower than the first. It requires sending the row and
column ports low one-after-another to determine all the keys pressed with accuracy –
but at a slower rate. To prevent ghost keys, you should connect a diode in series with
each button on the matrix.

Remember that buttons and switches “bounce” after being pressed/released, giving
multiple key-press signals if a delay of about 30ms between readings is not added.

 Pulse Width Modulation:

Most microcontrollers have the facility to perform Pulse Width Modulation (PWM)
commands to control the speed of motors. In short, PWM rapidly cycles an output
port at a desired frequency at the supply voltage (5v) to speed up or slow down a
motor. Since digital I/O’s cannot output an analogue voltage (variable voltage), the
workaround uses the fact that rapidly pulsing the motor at several kilohertz will cause
it to rotate, with a speed proportional to the frequency (similar to a stepper-motor).

PWM has the added benefit of using the motor’s full torque at variable speeds, unlike
analogue voltages outputted by the M30624FGMFP’s two internal digital to analogue
converters. To connect a motor to a PWM output, attach one of the wires to a
MOSFET transistor connected to an I/O port, and the other wire to the negative
supply. To operate the motor, switch the port on with a PWM command.

You can also use PWM for a limited range of other devices. PWM commands to
LEDs will change the apparent brightness, as the LED is cycled on and off too fast for
it to build up to full power. This has the same effect as supplying the LED with a
lower voltage than required to shine at full brightness, but does not change the
supplied voltage (or current), which stays at 5v and ~20ma respectively. Most new
mobile phones use pulse-width modulation to make the backlit screen fade in and out.

Documentation for the Mitsmini Board (Version 1.0) Page 34

CHAPTER 6: Appendix

 Glossary of Terms:
Some terms used in this documentation may be unfamiliar to new users or people
previously unexperienced in microcontrollers/digital electronics and are described
below.

Analogue IC
Analogue IC’s (such as Op-Amps) are still used in electronics, but have given way to digital in recent
times. Analogue signals are signals that vary between 0V and the supply voltage. Analogue is useful in
audio electronics, but due to its susceptibility to noise it is no longer used for communication purposes.

Digital IC
Digital IC’s are now widely used in modern electronics. Digital communication is more reliable than
its analogue counterpart (more immune to noise) and subsequently is the choice for most modern
communication methods. Digital data can be either high (digital “1”) or low (digital “0”). A high
digital signal is denoted by the logic voltage (usually 5V) used on the digital chip, while a low signal is
0V (ground).

I/O Port
A single pin on a microcontroller that can be set to act as an input (receiving data), or an output. A
digital I/O port can be read by the microcontroller if it is in input mode, or it can be set high or low if it
is configured as an output.

This can also refer to an entire group of I/O ports which make up a port byte. Such port groups usually
carry names of descending alphabetical letters or numerical numbers.

Microcontroller
A digital integrated circuit that combines several items such as RAM, FLASH, Shift-Registers, etc. into
a single package. A microcontroller can be programmed, and can control several devices
simultaneously. There are many types of microcontrollers on the market, the most popular of which are
from the brands of ATMEL and PIC.

PWM
Short for Pulse-Width-Modulation, this is mostly used for motor speed control. A PWM signal is a
digital signal pulsed from high to low at a high frequency (several KHz), with a duty cycle (on and off-
time) varied by the microcontroller. Varying the duty cycle causes a standard motor to rotate at a
slower speed than normal at full torque.

Serial UART
A serial UART (Universal Asynchronous Receiver/Transmitter) is a method of Digital
Communication, sending data to another device equipped with a UART.

Surface Mount
Tiny components that are assembled via machines onto the top layer of a PCB. SM components are a
standard in the electronics industry as they allow large circuits to be contained in a small area. Almost
every component used in commercial electronics products today is surface mount. SM devices are very
hard to solder or remove by hand, and so most hobbyists use through-hole components.

Through Hole
Standard components that are mounted on the top layer of a PCB, but are soldered to the underside via
small holes (hence the name). Through hole technology is old and generally only used in hobbyist
electronics or specialist components (such as regulators, MOSFETs, etc.), most of which require more
power than fine surface-mount tracks can supply.

Documentation for the Mitsmini Board (Version 1.0) Page 35

 About the Author:
I have spent many hours compiling this documentation. Please feel
free to email me with any comments/questions/abuse/ideas on this
document, or the Mitsmini (and related equipment). Address all emails
to “dean_camera@hotmail.com” (without the quotes). I would love to
hear from you.

I would also like to hear about:
• Stories
• Circuits
• Links to relevant Websites
• Technical Information
• Corrections
• Anything else related to this document/microcontrollers

Check out my other projects at my website: http://home.pacific.net.au/~sthelena.

 Disclaimer:
ALL CARE HAS BEEN MADE TO ENSURE THE ACCURACY OF THIS DOCUMENT BUT ALL
INFORMATION OUTLINED IS TO BE FOLLOWED AT THE USER’S OWN RISK. SOME CIRCUITS
DESCRIBED ARE UNTESTED. THE AUTHOR OF THIS DOCUMENT IS NOT LIABLE FOR ANY
DAMAGES CAUSED AS A RESULT OF THE INNACURACY OF ANY INFORMATION OUTLINED IN
THIS DOCUMENT.

BY ACTING ON ANY ADVICE/INSTRUCTIONS/INFORMATION CONTAINED IN THIS DOCUMENT,
YOU AGREE TO ALL TERMS DESCRIBED IN THIS DISCLAIMER. IT IS IMPORTANT TO READ
AND FULLY UNDERSTAND ALL WARNINGS AND/OR CAUTIONARY NOTICES BEFORE
ATTEMPTING ANY HARDWARE AND/OR SOFTWARE MODIFICATIONS.

THIS DOCUMENTATION IS PROVIDED FREE FOR PUBLIC USE, BUT THIS LICENCE MAY BE
RETRACTED AT ANY TIME. IF ANY LICENCE(S) IS RETRACTED THAT EXCLUDE YOUR
PERSON, YOU MUST DESTROY ALL COPIES OF THIS DOCUMENTATION. BY RETAINING ANY
COPIES OF THIS DOCUMENTATION AFTER LICENCE(S) ARE REMOVED, YOU ARE COMMITING
AN OFFENCE PUNISHABLE BY LAW.

THIS INTELLECTUAL WORK IS PROTECTED BY INTERNATIONAL COPYRIGHT LAW. IT MAY
NOT BE MODIFIED WITHOUT PRIOR CONSENT FROM THE AUTHOR.

This document is © Dean Camera, 2004-2005. It may be photocopied, transmitted or copied without
prior permission from the author but may NOT be modified for re-distribution without the author’s
prior consent. This document may be submitted to any hard copy or electronic database, provided that a
notification is sent to the author describing the action prior to submittal.

Documentation for the Mitsmini Board (Version 1.0) Page 36

http://home.pacific.net.au/~sthelena

